INVESTMENT MATERIALS

Dental Materials
Sang Park, DDS
Overview

- **Investment Materials**
 - ADA Specification 2
 - Chemistry: Composition, Setting reaction
 - Physical Properties: Setting, Expansion, Strength
 - Types of Investments
 - Gypsum-bonded Investments
 - Phosphate-bonded Investments
 - Ethyl silicate-bonded Investments
Casting Procedures

- The lost wax casting process: a metal casting is made using a refractory mold made from a wax replica or pattern.
Steps

- Spruing of wax pattern
- Investing
- Wax burn-out
- Casting with molten alloy
Spruing & Investing:

- Surrounding wax pattern with a material that can accurately duplicate its shape and anatomic features while leaving a channel for entry of molten alloy.
• (O’Brien, 1997)
Burnout:

- Removal of wax pattern to create mold into which molten alloy can be placed.
Casting:

- Introducing molten alloy into the mold.
- **Shrinkage**
 - wax
 - gold

- **Expansion**
 - setting
 - hygroscopic
 - thermal
 - wax
Shrinkage Compensation:

- Molten alloys shrink on solidification
- Mold must be made correspondingly larger than original wax pattern
- Mechanisms to produce expanded mold
 - Wax pattern expansion
 - Setting expansion
 - Hygroscopic expansion
 - Thermal expansion
Types of Investments

- **Gypsum-bonded investments**
 - Used for casting gold alloys

- **Phosphate-bonded investments**
 - Used for alloys used in ceramometal restorations

- **Ethyl silica-bonded investments**
 - Used for casting base metal alloy partial dentures
Gypsum-bonded investments

- The mold materials most commonly used in the casting of dental gold alloys.
- Decomposes at high temperatures; not suitable for casting high-melting gold alloys, or base metal alloys.
Gypsum-Bonded Investments

- Uses
 - Casting gold alloys w/ metal < 700-1000 C
Gypsum-bonded investments: ADA Specification No. 2

- **Type I**
 - THERMAL expansion
 - Inlays or crowns

- **Type II**
 - HYGROSCOPIC expansion
 - Inlays or crowns

- **Type III**
 - Partial dentures with gold alloy
Gypsum-Bonded Investments

Composition

- Refractory
 - Crystalline polymorphs of silica (quartz or cristobalite)
 - 55-75%

- Binder
 - Calcium sulfate hemihydrate (plaster or stone)
 - 25-45%
 - In setting, hemihydrate binder combines with water to form dihydrate (gypsum)

- Modifiers
 - Accelerators, retarders, reducing agents or additives that reduce the thermal contraction of the binder. Coloring agents.
Microstructure of a set gypsum-bonded investment. The large particles are cristobalite: the small acicular crystals are gypsum formed during setting. (SEM at x 3,000) (O’Brien, 1997)
Types of Expansion:

- **Purpose:** to enlarge the mold to compensate for the casting shrinkage of the gold alloy

 1. **Normal setting expansion:** occurs as investment hardens in air
 2. **Hygroscopic setting expansion:** occurs as investment hardens while immersed in water
 3. **Thermal expansion:** occurs as investment is heated
Normal Setting Expansion:

- **Mechanism:** silica particles interfere with the interlocking of crystals; the outward thrust of the crystals increases the expansion of investment.
- **Maximum expansion in air** 0.6%
Hygroscopic setting expansion:

- **Mechanism**: a continuation of normal setting expansion b/c immersion in water encourages continued growth of crystals.
- **Expansion range**: 1.2-2.2%
Factors that **increase** hygroscopic expansion:

- **Composition**: more silica, finer particles lead to more outward growth of crystals
- **W:P ratio**: less water, more powder in mix
- **Spatulation**: more mixing time
- **Time of immersion**: immerse in water before initial set
- **Confinement**: less opposing force from walls of casting ring (wet cellulose)
- **Water**: more immersion water
- **Shelf life**: fresher investment
Thermal expansion:

- In quartz and cristobalite, the high-temp phase is less dense than low-temp phase; result in expansion.
- Thermal expansion: 1-1.6%
- At high temp, sulfur dioxide gas is released causing discoloration and embrittlement of alloy.
- W:P ratio--- more powder, less water result in increased thermal expansion
Compressive strength: minimum strength is necessary to prevent fracture of investment from the impact of metal entering the mold---more powder, less water increase investment strength.

Fineness: a finer particle size leads to higher hygroscopic expansion and smoother surface on casting.

Porosity: venting the mold, air must be eliminated through the pores of investment to prevent buildup of pressure so that molden metal can flow into the mold during casting.

Storage: preweighed packages
Phosphate-Bonded Investments

- Uses
 - Casting ceramometal alloys w/ metal < 1200 °C (2192 °F)
Phosphate-Bonded Investments

- **Composition**
 - **Binder**
 - Magnesium-oxide (basic) and phosphate (acid, mono-ammonium)
 - **Refractory**
 - Colloidal silica liquid. Increases expansion and enhances casting surface smoothness
 - **Modifiers**
 - Carbon: to produce clean castings and facilitate the devesting. Don’t use with palladium-containing alloys because carbon embrittles alloy)
Phosphate-Bonded Investments

Properties

- Complex reaction.
- Setting and thermal expansion
 - Water gives less thermal expansion than silica sol
Phosphate-Bonded Investments

- Working and Setting time
 - Markedly affected by temperature
 - The warmer the mix, the faster the set
 - Increased spatulation increases set and gets greater rise in temperature
 - Increased Liquid/Powder ratio increases working time
Ethyl Silicate-Bonded Investments

- **Uses:**

casting high-fusing metal partial denture alloys
Ethyl Silicate-Bonded Investments

- **Composition**
 - **Binder**
 - Silica gel that reverts to silica (cristobalite) on heating
 - **Refractory:**
 - Quartz or cristobalite
Ethyl Silicate-Bonded Investments

- Properties
 - Setting: drying/gelation causes contraction
 - Complicated and time-consuming procedures involved
 - Heating temp from 1090 – 1180 C (2000-2150 F)
 - Fragile cast
Reference: