Acupuncture & Myofascial Pain

Uncovering the Central Map of Physiological Homeostasis

Joseph F. Audette, M.A., M.D.
Spaulding Rehabilitation Hospital
Department of PM&R, Harvard Medical School
INTRODUCTION

- Historical Context
- Ronald Melzack in 1977 recognized strong correlation between TrP’s and AP
- 71% correspondence based on spatial location and referral pattern.
Colour Fig. 8 The Small Intestine Meridian of Hand-Taiyang
Colour Fig. 7 The Heart Meridian of Hand-Shaoyin
FURTHER CORRESPONDENCES

• Stimulation of TP and AP provide sustained pain relief for both somatic and visceral conditions.
 – Pelvic Pain
 – Gastrointestinal Issues
 – Other
MYO-VISCERAL RELATIONSHIPS

- McBurney’s point and appendicitis
- Angina and shoulder and arm TrP’s identified
- Pelvic Organ Dysfunction and TrP’s in Lower Abdomen
- Liver/Gallbladder disease and TP in right trapezius (GB21)
A External oblique

B Belch button
HYPERSTIMULATION ANALGESIA

- Acupuncture and Trigger Point stimulation techniques can be painful.
- Analgesia based on overstimulation of the peripheral nociceptive system, inducing a self-regulating pain modulating effect.
- Fine et al. (Pain 1988) found pre-injection with naloxone could partially reverse benefit of TPI.
 - Suggests activation of Diffuse Noxious Inhibitory Control System vs. Acupuncture-like activation of endogenous opioid system.
DEEP ORGANIZATION

• Observed relationships between trigger points and acupuncture points and the common finding of relationships between anatomically distant points and their effect on local painful sites on the surface of the body represents important clues about the deep organization of the central nervous system.
GOALS OF DISCUSSION

• Observed phenomenon seen with needle insertion into a muscle or tendon.
• Detail Acupuncture theory on the effect of needle stimulation on the neuromuscular system
• Outline basic neuromuscular physiology involved with needle insertion.
• Relate TrP’s literature to amplify our understanding of the acupuncture neurophysiology.
• Outline an integrated hypothesis of action.
• Future research
LOCAL POINTS IN ACUPUNCTURE

• Careful palpation of the surface of the body reveals distinct differences in the quality and density of the underlying tissue. Many of these areas or points will be tender. These are the local points.

• A Shi points in TCM

• Kori in Japanese system
ACTIVE LOCAL POINTS

- More sensitive to light palpation (allodynia?)
- Correlation with changes in skin impedance (Low Impedance, High Conductivity)
- Palpation produces hyperemia of skin (Sympathetic response?, Mast cells?)
- Local trophedema
- Affect on distant areas of pain
- Radiation with prolonged palpation in non-dermatomal or myotomatal distribution
INTERNAL EXTERNAL RELATIONSHIPS

• *Active* points relate to internal organ dysfunction
 – Active points on lung meridian with bronchitis or asthma
 – Active points along gallbladder meridian with liver and gallbladder dysfunction.
ACTIVE POINTS AND MERIDIANS

- Local points may or may not be directly on a classical acupuncture meridian or acupoint.
- Seem as well as others theorize that acupuncture grid of points illustrates much as does Travell’s grid of myofascial TrP’s where to begin looking for active points. Points not in static locations.
Point Location Fiasco
Point Location Fiasco
PHENOMENOLOGY OF NEEDLE INSERTION

• *Into skin over active point*
 – Twitch response of underlying muscle.
 – Surrounding erythema.
 – Reflexive reduction of spasm underlying muscle in myotome often unrelated to dermatome of stimulation.

• *Into active point of muscle or tendon*
 – Transient increase in muscle tension.
 – Needle *grabbed* by the muscle.
TWITCH vs De Qi

• Phenomenon of “Qi rushing to the needle” with acupuncture stimulation was in fact a local twitch response of the underlying muscle and fascia. (Seem *A New American Acupuncture* Blue Poopy Press, 1993).

• De Qi response obtained with rapid twisting of needle in muscle or tendon
 – Described as painful, cramping, or full feeling
Biomechanics of Needle Response

• Grasp of Muscle increased by twisting needle
 – Unilateral twisting > Bilateral twisting > No twisting
 – True Acupoints required 18% greater pull force than Sham points
LOCAL TWITCH RESPONSE

• Occurs with repeated pecking of needle
• Continues until palpable change in tension of the muscle.
• Induces referral pattern of sensation or pain in non-dermatomal and non-myotomal pattern.
LTR AND NEUROPLASTICITY

• What does the presence of the LTR at active points suggest about central neuroplastic changes

• Borrow from the Myofascial Literature
ABNORMAL EMG FINDINGS

• Spontaneous activity 50-700uV (SEA)
 – Not blocked by curare (Endplate Activity?).
 – Blocked by phentolamine (sympathetic blockade).

IRRITABLE ENDPLATE THEORY

- SEA is evidence of excessive release of ACh from endplate
- LTR due to mechanical disruption of endplate
- Repetitive local depolarization's of muscle fiber leads to energy crisis in contractile unit and observed contraction knot
- Loss of local capillary blood flow leads to ischemia and pain
Dysfunctional Endplate Region

Sensitizing substances

Energy crisis

Increased energy demand

Depolarization

Excess acetylcholine release

Motor nerve terminal

Nociceptive nerve fibers

Autonomic nerve fibers

Decreased energy supply

Compression of vessels

Sarcomere contracture

Calcium release

SR

Muscle fiber

Myofascial pain and dysfunction: The trigger point manual: Volume one, Upper half of body (2nd ed.)
Baltimore, MD: Williams & Wilkins
MUSCLE SPINDLE DYSFUNCTION

- SEA is abnormal firing of muscle spindle
 - Blocked by phentolamine (sympathetic input found in intrafusal fibers, Santini Brain Res 33:289-302 1971)
 - Confirmed in Animal Studies (Chen and Hong; Arch Phys Med Rehab 79:790, 1998)

- LTR due to lowered stretch reflex threshold
- Taut Band due to increase in set-point of gamma motorneuron pool
- Recent evidence suggest Sympathetic nervous system also interacts with motor endplate increasing release of ACh
• LTR is a spinal reflex

• LTR potentials have been shown to be ablated with peripheral nerve sectioning but not by spinal cord lesioning cephalad to the segment where the LTR is produced. Hong CZ. Arch Phys Med Rehab 1994;75:12.

• Bilateral LTR’s observed with unilateral needling of active TrP